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ABSTRACT Here, we report the complete and draft genome sequences of 8 Staphy-
lococcus pseudintermedius isolates, 4 from human bacteremia infections and 4 from
canine bacteremia infections. This species is recognized primarily as an important ca-
nine pathogen, but it is increasingly being identified in human infections.

Staphylococcus pseudintermedius is a major canine pathogen that, similarly to Staph-
ylococcus aureus, has an increasing trend of multiple-drug resistance. The identifi-

cation of S. pseudintermedius as a human pathogen has increased (1–6). Isolates may be
misidentified as S. aureus, which can complicate treatment (5, 7, 8). The ability of
staphylococci to exit the bloodstream and establish secondary infections in a myriad of
tissues suggests a broad arsenal of virulence factors (9–11). Whole-genome sequencing
of isolates from both humans and dogs may provide valuable insights into the virulence
factors of the organism, as well as into potential differences in isolates causing human
infections. Here, we present 8 whole-genome sequences of S. pseudintermedius from
human and canine bacteremia cases.

Four human bacteremia isolates were acquired from a collection of 45 human
isolates. A description of the isolates and their collection was previously published (5).
Four canine bacteremia isolates were selected from isolates collected by the Clinical
Microbiology Laboratory of the Texas Veterinary Medical Teaching Hospital at Texas
A&M University between 2007 and 2016. Isolates were stored in lysogeny broth
supplemented with 10% glycerol at �80°C at the time of isolation. Isolates were
originally identified, as previously described, as S. pseudintermedius, and identification
was confirmed using multiplex PCR and matrix-assisted laser desorption ionization–
time of flight (MALDI-TOF) mass spectrometry (5, 12). After sequencing, multilocus
sequence typing (MLST) and ribosomal multilocus sequence typing (rMLST) were used
to further confirm identification as S. pseudintermedius (13, 14). Prior to sequencing,
isolates were revived by growing them on blood agar for 24 hours at 37°C. Isolates were
subcultured twice to ensure purity. A single colony was inoculated into Bacto brain
heart infusion broth (BHIB; Becton, Dickinson and Company, Franklin Lakes, NJ, USA)
and grown for 8 hours at 37°C prior to extraction.

For Illumina sequencing, 1-ml aliquots of each isolate in BHIB were pelleted and
lysed in a Qiagen TissueLyser using Macherey-Nagel bead tubes type B and lysis buffer
from the NucleoMag tissue DNA kit. DNA isolation followed the manufacturer’s proto-
col (Macherey-Nagel). Libraries were prepared using the Illumina Nextera DNA Flex
library preparation kit following the manufacturer’s protocol and sequenced with an
Illumina MiSeq V2 2 � 250-bp kit. All data were uploaded to Illumina’s cloud-based
resource, BaseSpace, for run monitoring, FASTQ generation, demultiplexing, and
adapter trimming. The sequencing output of paired-end read sets contained approxi-
mately 1.5 million reads/isolate of 250 bp, resulting in approximately 300� coverage.

For MinION sequencing, DNA was extracted from a 1-ml aliquot of each isolate in BHIB
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using a MasterPure Gram-positive DNA purification kit per the standard protocol, with the
addition of lysostaphin during the lysing incubation. Libraries were prepared following the
manufacturer’s protocol for 1D PCR barcoding of genomic DNA using the Nanopore
SQK-LSK108 kit. Genomic DNA quality was verified on a genomic DNA TapeStation run
(Agilent). Data collection was performed by MinKNOW software, utilizing the following
workflow: NC_48Hr_Sequencing_Run_FLO_MIN106_SQK-LSK108.py. MinION sequencing
data were demultiplexed and base called using Albacore Sequencing Pipeline Software
version 1.2.4. Sequencing resulted in an output of read sets containing 100 to 500 Mb per
sample, resulting in 40� to 200� coverage.

MinION reads were assembled using Canu version 1.5 (15). The draft genomes were
polished using Pilon version 1.22 (16); the initial polishing run utilized BAM files of
MiSeq reads mapped to the Canu draft genome (Bowtie2 version 2.3.4.3) (17, 18), and
the subsequent runs used MiSeq reads mapped to the previously polished draft
genome for a total of 3 polishing runs. The genomes were analyzed for completeness
using Benchmarking Universal Single-Copy Orthologs (BUSCO) version 3 (19, 20) using
the Firmicutes OrthoDB version 9 data set. Genomes were scaffolded using MeDuSa
version 1.6 (21), using 3 reference genomes, namely, ED99 (GenBank accession number
CP002478) and the two single-contig assemblies from this study (Tamu 51_92 and
Tamu 53_60). Default parameters were used for all software unless otherwise specified.

The final assemblies resulted in genomes between 2,561,987 bp and 2,615,859 bp
(Table 1). The genomes consisted of 1 to 29 contigs per isolate, with the largest contigs
ranging from 2,615,859 to 420,164 bp. Two genomes were complete single-contig
assemblies, 2 were single-scaffold assemblies, and 4 were draft genomes of 2 to 3
scaffolds. BUSCO scores for the genomes ranged from 98.7% to 99.6%.

Data availability. This whole-genome project has been deposited in DDBJ/ENA/
GenBank under the accession number PRJNA521119. SRA and genome accession
numbers are listed in Table 1. This announcement presents the first version of each
genome.
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TABLE 1 Characteristics and accession numbers of genome sequences of S. pseudintermedius bacteremia isolatesa

Isolate Source
No. of
contigs

No. of
scaffolds BUSCO (%) N50 (bp)

Genome
size (bp)

G�C
content (%)

GenBank
accession no.

SRA accession no.

MinION
FastQ

MinION
Fast5 MiSeq

Tamu 46_57 Canine 13 2 99.20 638,705 2,561,987 37.7 SEZZ00000000 SRR8538958 SRR9211302 SRR8538959
Tamu 49_44 Canine 20 1 98.70 385,638 2,583,863 37.67 CP035743 SRR8538960 SRR9211301 SRR8538961
Tamu 50_21 Canine 7 2 99.60 1,401,107 2,527,337 37.74 SEZY00000000 SRR8538954 SRR9211304 SRR8538955
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